联系电话:
EN
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
新闻资讯
新闻资讯
带你全方面了解和分析开关稳压器噪声

  一般而言,与低压差(LDO)稳压器输出相比,人们认为传统开关稳压器的输出电压噪声很大。然而,LDO电压会引起严重的额外热问题,并使得电源设计更为复杂。全面认识开关稳压器噪声很有必要,有助于设计低噪声开关解决方案,使之产生与LDO稳压器相当的低噪声性能。本文分析和评估的目标是采用电流模式控制的降压稳压器,因为它在应用中很常用。信号分析是了解开关纹波噪声、当前宽带噪声特性(及其来源)、开关引起的高频尖峰噪声的主要法。本文将讨论开关稳压器PSRR(电源抑制比,其对输入噪声抑制很重要)以及信号分析方法。

  图1所示为典型的降压稳压器。两个开关交替接通和断开,因此SW节点电压V SW 是一个理想的方波,此特性进而传递到占空比和输入电压。V SW VSW可以用下面的公式表示:

  V IN 为输入电压。D为占空比;对于降压稳压器,其等于 V OUT /V IN

  V IN 确定后,V SW 基波和谐波成分仅取决于占空比。图2显示了与占空比相关的 V SW 基波和谐波幅度。当占空比接近一半时,纹波幅度以基波为主。

  C OUT 为输出容量值。ESL为电容串联电感值。ESR为电容串联电阻值。

  为了简化计算,我们假设输出LC级为20 dB/十倍频程,然后是与占空比相关的V OUT 纹波基波和谐波幅度,如图3所示。当占空比接近一半时,三次或奇数次谐波将高于偶数次谐波。由于LC抑制,较高的谐波将具有较低的幅度,并且与总纹波幅度相比,其比例非常小。同样,基波幅度是开关稳压器输出纹波中的主要成分。

  对于降压稳压器,基波幅度与输入电压、占空比、开关频率和LC级有关;但是,所有这些参数都会影响应用要求,如效率和解决方案尺寸等。为了逐步降低纹波,建议增加后置滤波器。

  开关稳压器中的宽带噪声是输出电压上的随机幅度噪声。它可以用整个频率范围内的噪声密度来表示,单位为 V/√Hz z,或用Vrms来表示,其与频率范围内的密度不可分。由于硅工艺和基准电压源滤波器设计的限制,宽带噪声主要位于开关稳压器的10Hz至1MHz频率范围内,在低频范围内很难通过增加滤波器来将其降低。

  典型降压稳压器宽带噪声峰峰值幅度电压约为100μV至1000μV,远低于开关纹波噪声。若使用额外的滤波器来降低开关纹波噪声,则宽带噪声有几率会成为开关稳压器输出电压的主要噪声。图4显示了当没有额外滤波器时,降压稳压器输出噪声的大多数来自是开关纹波。图5显示了当使用额外滤波器时,输出噪声的大多数来自是宽带噪声。

  对于获得的控制环路传递函数和模块噪声特性信息,有两种不同的噪声:环路输入噪声和环内噪声。控制环路带宽内的环路输入噪声会传输到输出,而环路带宽之外的噪声会被衰减。对开关稳压器,设计低噪声EA和基准电压源至关重要,因为单位反馈增益会保持噪声水平不变,而不是随着输出电压电平增加而提高它。最大的挑战是找出总系统中最大的噪声源,并在电路设计中降低该噪声。ADP5014针对低噪声技术进行了优化,采用电流模式控制方案和一个简单的LC外部滤波器,在10Hz至1MHz频率范围内实现了低于20μVrms的噪声性能。ADP5014的输出噪声性能如图7所示。

  第三类噪声是高频尖峰和振铃噪声,因为输出电压是由开关稳压器导通或关断瞬变产生的。考虑硅电路和PCB走线中的寄生电感和电容;对于降压稳压器,快速电流瞬变将在SW节点处引起高频电压尖峰和振铃。尖峰和振铃噪声会随着电流负载的提高而提高。图8显示了降压稳压器如何形成尖峰。根据开关稳压器的导通/关断压摆率,最高尖峰和振铃频率将在20MHz至300MHz范围内,受寄生电感和电容影响,输出LC滤波器在抑制方面可能不是很有效。与上述关于传导路径的所有讨论相比,最差的是来自SW和V IN 节点的辐射噪声,由于其频率很高,输出电压和其他模拟电路会受到影响。

  为了降低高频尖峰和振铃噪声,建议采用有效方法实施应用和芯片设计。首先,在终端负载上应使用额外的LC滤波器或磁珠。通常,这会使输出上的尖峰噪声远小于纹波噪声,但会增加更高频率的成分。其次,应屏蔽SW和输入节点的噪声源或让其远离输出侧及敏感模拟电路,并且屏蔽输出电感。精心布局和布线对设计很重要。第三,优化开关稳压器的导通/关断压摆率,并尽量减小开关稳压器的寄生电感和电阻,从而大大降低SW节点噪声。ADISilentSwitchr ® 技术也有助于通过芯片设计降低V IN 节点噪声。

  PSRR反映开关稳压器抑制输入电源噪声传输到输出的能力。本部分分析低频范围内的降压稳压器PSRR性能。高频噪声影响输出电压主要是通过辐射路径,而不是通过前面讨论的传导路径。

  开关稳压器的PSRR性能取决于低频范围内的环路增益性能。开关稳压器的固有LC滤波器能抑制中频范围(100Hz至10MHz)内的输入噪声。此范围内的抑制性能比LDO PSRR好得多。因此,开关稳压器具有理想的PSRR性能,因为其在低频时具有高环路增益,而固有LC滤波器会影响中频范围。

  越来越多的模拟电路,如ADC/DAC、时钟和PLL等,需要干净的能提供高电流的电源。每个器件对不同频率范围内的电源噪声都有不同的要求和规格。有必要全方面了解不一样的开关稳压器噪声并认知电源噪声要求,从而设计和实现高效率、低噪声开关稳压器,以满足大多数模拟电路电源的低噪声规格。与LDO稳压器相比,这种低噪声开关解决方案将有更高的功效比、更小的解决方案尺寸和更低的成本。